Worksheet

_		_		
Turbo Outlet ID:	4.00	in.		
Turbo Inlet Area:	12.57	in²		
Turbo Output:	85.0	lb/min	@ 7000 ft	
•				
Air density:	0.0575	lb/ft³	@ 7000 ft	
Air density:	0.0644	lb/ft³	@ 4000 ft	(Bonneville salt flats)
•				
Turbo Output:	95.2	lb/min	@ 4000 ft	
Turbo Output:	1478	ft³/min	@ 4000 ft	
Turbo Output:	24.6	ft³/sec	@ 4000 ft	
Turbo I/O:	42574	in³/sec	@ 4000 ft	

Design NACA duct submerged inlet duct for optimum ram air effect at nominal maximum vehicle velocity of 400 mph. NACA duct ram-air recovery ratio \geq 0.9 (90%) for inlet velocity ratios between 0.6 and 1.5, at Mach numbers from 0.30 to 0.875. Optimum inlet velocity ratio is \approx 0.70, i.e. duct inlet velocity = 0.70 x vehicle (air stream) velocity @ 400 mph.

Vehicle velocity:	400	mph @ 4000 ft
Vehicle velocity:	587	ft/sec @ 4000 ft
Vehicle velocity:	7040	in/sec @ 4000 ft
0.90	47304	in³/sec NACA duct ram-air recovery ratio.
1.00	6.72	in ² Inlet duct area @ nominal velocity ratio.
0.70	9.60	in ² Inlet duct area @ optimum velocity ratio.

Optimum NACA duct inlet dimensions are h:w = 1:4. (Pressure recovery should be studied for other ratios!) Ramp angle is normally 7° but ramp angles up to 10° can be used without serious pressure losses.

w = 6.196 in. Equals 4 times h. I = 12.617 in. Based on 7° ramp angle.	h =	1.549	in.	
·	w =	6.196	in.	Equals 4 times h.
	I =	12.617	in.	Based on 7° ramp angle.
I = 8.785 in. Based on 10° ramp angle.	I =	8.785	in.	Based on 10° ramp angle.
Duct inlet velocity: 4928 in/sec	Duct inlet velocity:	4928	in/sec	
Duct inlet velocity: 411 ft/sec	Duct inlet velocity:	411	ft/sec	
1.50 187 mph Minimum speed for 90% ram-air recovery @ velocity ratio.	1.50	187	mph	Minimum speed for 90% ram-air recovery @ velocity ratio.
0.60 467 mph Maximum speed for 90% ram-air recovery @ velocity ratio	0.60	467	mph	Maximum speed for 90% ram-air recovery @ velocity ratio.
			_	

Inputs Outputs

Ref. NACA DUCT RATIONALE FOR BUB STREAMLINER,pdf R. Keller 03/15/07 NACA ACR No. 5120