Author Topic: nitrous naughty but nice  (Read 4249 times)

0 Members and 1 Guest are viewing this topic.

Offline hawkwind

  • Sr. Member
  • ****
  • Posts: 415
nitrous naughty but nice
« on: October 07, 2005, 03:32:13 AM »
yes its a cut and paste  :P  


 

Nitrous-Naughty and Nice
    Nitrous oxide can double the horsepower of most engines with less effort and money being spent than any other modification. Even the "smog people" are usually happy.

    A nitrous engine can be built as a stock rebuild or it can be a dedicated effort to maximize the total performance package. As more power is generated, more waste heat, exhaust air flow and combustion pressures push the limits of engine strength. Often more beef is needed in the drive train and tires.

    All stock factory engines are built with a safety factor when it comes to RPM, HP produced, cylinder pressure, engine cooling, etc. If you are only going to use a 100 HP nitrous setup on a 300 cubic inch or larger engine, built in factory safety factors are probably sufficient. As power output levels are raised engine modifications are usually prudent.

    The most common mistake made when using nitrous oxide injection concerns ignition timing. A normally aspirated engine makes its best power when peak cylinder pressures occur between 14 and 18 degrees after TDC. KB Pistons usually require 34 degrees BTDC ignition timing at full mechanical advance to achieve proper ATDC peak cylinder pressure. The total time from spark flash to the point of peak pressure is typically 48 to 52 degrees. If an engine is producing 30% of its power from nitrous, the maximum cylinder pressure will occur too close to TDC to avoid run away detonation. If ignition does not get retarded, good-bye horsepower and head gaskets. The key to getting max HP from a max nitrous engine is to shift the maximum cylinder pressure event progressively further after TDC.



--------------------------------------------------------------------------------

                                                           
    Cylinder pressure of 1000 PSI at TDC, (FIG.1), can drop to 500 PSI with less than 3/8" of piston travel, (FIG. 2). If you can manage to get 1000 PSI in the same engine after the 3/8" travel, (FIG.3) , the pistons will have to travel an additional 3/4" to lower the cylinder pressure to 500PSI, (FIG.4). Work is defined as a force times distance. An average pressure, (750 PSI X 12-1/2 sq. in.), times distance in feet, (3/8"divided by12), equals 293 foot pounds of work.


--------------------------------------------------------------------------------

     Our second example, because it has twice the chamber volume above the piston location, must move twice as far to lower the cylinder pressure by 1/2 Since all the other numbers, by our own definition are the same, the force
multiplied by a distance twice that of the first example will equal twice the work done, 586 foot pounds of work.



--------------------------------------------------------------------------------

    There is no free lunch in horsepower equations because to get 1000 PSI above the piston in the second example takes twice as much fuel and energy as the 1000 PSI in the first example. What this offsetting of the peak pressure does is allow us to use the extra fuel mix available to a nitrous engine without breaking and melting things. The system that allows us to postpone maximum cylinder pressure is ignition timing retard. To a lessor extent short rod ratios, lower compression ratios, high RPM, aluminum heads, a tight quench, a rich fuel mixture, a small carburetor and hotter cams tend to delay maximum cylinder pressure.

    Understand that, in our quest to delay cylinder pressure?s peak time, more is not necessarily better. Instead, consider that the ideal cylinder pressure would be just short of detonation pressure and this pressure would be maintained from top dead center, and as long as possible after TDC. If timing is really late, you won?t build enough cylinder pressure to start the car, let alone drive it. The 1000 PSI pressure in the example is not the maximum allowable combustion pressure but, rather, a comfortable pressure for illustration of the work principle.

    Some nitrous manufacturers recommend, "retard the timing two degrees for each fifty horse power of nitrous". Other nitrous kits have the flame speed artificially slowed by the intentional use of a rich fuel to nitrous ratio. The maximum performance engine with a heavy nitrous load must achieve peak cylinder pressure progressively further after TDC. The heavy load engine will have the fuel and oxygen mix to make high cylinder pressures, with the combustion chamber size being drastically increased due to the piston being on its way toward bottom dead center. The strongest engines have less compression ratio, less spark advance, and more nitrous.

    I have tried to explain the reason for a spark retard system in a Nitrous engine. However, many people just don?t like the idea of any retard. They say, "retard timing and exhaust heat goes up". It usually does in a stock non nitrous engine because lower peak cylinder pressure slows the burning. If the timing is retarded in a non-nitrous engine, the exhaust opens before the fuel mix is finished burning and exhaust temperatures go up. Piston temperatures usually go down and exhaust valve temperature goes up. In the nitrous engine, exhaust temperature goes up for several reasons. The first is that the power output has gone up considerably. More power usually produces more waste heat. Second, the need to keep maximum cylinder pressures within reason has dictated that the biggest part of the fire happens closer to the exhaust valve opening time. There just isn?t enough piston travel to extract all the energy out of the charge before the exhaust valve opens. Now, we could and sometimes do, open the exhaust valve later so more combustion pressure energy can be used to turn the crank. The trade off is negative torque on the exhaust stroke. If we still have significant cylinder pressure in the cylinder as the piston moves from BDC to TDC on the exhaust stroke, your net Hp falls drastically. A real problem at higher RPM.

    You can improve maximum power stroke efficiency and minimize exhaust pumping losses by running the engine at lower RPM and/or improving the exhaust valve size, lift and port design. A big nitrous engine likes everything about the exhaust to be big. If it flows good enough the cylinder will blow down by bottom dead center, even at high RPM with relatively mild exhaust valve timing. There are many variables in the design and development of an all out nitrous engine. A mistake will cause the melt down of any brand of piston. The high strength of the KB piston will withstand detonation and severe abuse. Unfortunately, all pistons will melt and when cylinder pressure limits are exceeded, run away detonation can occur. The excess detonation heat makes the plugs, valves and piston so hot the ignition system alone can not be used to shut the engine down. Continued operation worsens the situation to the point of a total melt down. Designing a maximum performance nitrous engine is more of an exercise in heat management than it is in engine building.

    A lack of a sufficient fuel supply is probably the most common killer of the nitrous engine. If you add a 300 HP kit to your present 300 HP engine, your fuel requirements roughly double and a shortage doesn?t just slow you down, it melts things. An electric fuel pump and fuel line devoted entirely to the nitrous equipment is recommended. Some people add a small "race fuel" tank just for the nitrous. If you are using a diaphragm mechanical pump to supply fuel to the carburetor, it is worth while to increase the fuel line I.D. If the carburetor goes lean while the nitrous is on, the pistons can melt even with a rich nitrous fuel jetting. The large fuel line trick (1/2" dia.) only makes a major improvement in the operation of diaphragm mechanical fuel pumps. It is a waste of time on most electric applications. An electric pump pushing a mechanical pump is not recommended and does not do well at high engine RPM. A large size line is effective with a mechanical pump, even if you use smaller fittings at the tank, fuel pump and carburetor. The advantage of the 1/2" large line is not related to the steady state flow rate of the line. The advantage relates to the acceleration time and displacement of the pulsating flow common to the mechanical pump.

    High compression ratios can be used with nitrous but shifting the maximum pressure after top dead center becomes more and more difficult. I prefer to use street compression ratios and then just work with adding more nitrous to get desired horsepower levels.

    We are currently testing some pistons specifically designed for Nitrous use. Current "off the shelf" pistons have been successfully run with a 500 HP nitrous kit combined with a Dr. Jacob's nitrous control system. Most of our effort has been to develop new ideas that will push the limit of nitrous technology. More testing is planned with a piston especially plated to reduce detonation.

    A beginner would do well to build a reliable high performance engine first, then advance to nitrous, turbo or supercharging. This makes for more fun, more education with less head ache and money spent. The book titled "Nitrous Oxide Injection" by David Vizard, published by S-A Design is stocked in any good speed shop and should be required reading by anyone wanting to run nitrous successfully.

Good luck!

John Erb
Chief Engineer,
KB Pistons
Previous Page / Table of Contents / Next Page
slower than most

Offline ddahlgren

  • Global Moderator
  • Full Member
  • ***
  • Posts: 272
nitrous naughty but nice
« Reply #1 on: October 07, 2005, 06:02:06 AM »
Quote
KB Pistons usually require 34 degrees BTDC ignition timing at full mechanical advance to achieve proper ATDC peak cylinder pressure


I guess chamber design is disregarded? This sounds more like an advertisement.

Dave[/quote]

Offline John Noonan

  • Hero Member
  • *****
  • Posts: 3606
  • 306 200+ mph time slips. 252 mph on a dirtbike
Re: nitrous naughty but nice
« Reply #2 on: October 07, 2005, 09:26:21 AM »
Quote from: hawkwind
on a roll blokes  :P


 

Nitrous-Naughty and Nice
    Nitrous oxide can double the horsepower of most engines with less effort and money being spent than any other modification. Even the "smog people" are usually happy.

    A nitrous engine can be built as a stock rebuild or it can be a dedicated effort to maximize the total performance package. As more power is generated, more waste heat, exhaust air flow and combustion pressures push the limits of engine strength. Often more beef is needed in the drive train and tires.

    All stock factory engines are built with a safety factor when it comes to RPM, HP produced, cylinder pressure, engine cooling, etc. If you are only going to use a 100 HP nitrous setup on a 300 cubic inch or larger engine, built in factory safety factors are probably sufficient. As power output levels are raised engine modifications are usually prudent.

    The most common mistake made when using nitrous oxide injection concerns ignition timing. A normally aspirated engine makes its best power when peak cylinder pressures occur between 14 and 18 degrees after TDC. KB Pistons usually require 34 degrees BTDC ignition timing at full mechanical advance to achieve proper ATDC peak cylinder pressure. The total time from spark flash to the point of peak pressure is typically 48 to 52 degrees. If an engine is producing 30% of its power from nitrous, the maximum cylinder pressure will occur too close to TDC to avoid run away detonation. If ignition does not get retarded, good-bye horsepower and head gaskets. The key to getting max HP from a max nitrous engine is to shift the maximum cylinder pressure event progressively further after TDC.



--------------------------------------------------------------------------------

                                                           
    Cylinder pressure of 1000 PSI at TDC, (FIG.1), can drop to 500 PSI with less than 3/8" of piston travel, (FIG. 2). If you can manage to get 1000 PSI in the same engine after the 3/8" travel, (FIG.3) , the pistons will have to travel an additional 3/4" to lower the cylinder pressure to 500PSI, (FIG.4). Work is defined as a force times distance. An average pressure, (750 PSI X 12-1/2 sq. in.), times distance in feet, (3/8"divided by12), equals 293 foot pounds of work.


--------------------------------------------------------------------------------

     Our second example, because it has twice the chamber volume above the piston location, must move twice as far to lower the cylinder pressure by 1/2 Since all the other numbers, by our own definition are the same, the force
multiplied by a distance twice that of the first example will equal twice the work done, 586 foot pounds of work.



--------------------------------------------------------------------------------

    There is no free lunch in horsepower equations because to get 1000 PSI above the piston in the second example takes twice as much fuel and energy as the 1000 PSI in the first example. What this offsetting of the peak pressure does is allow us to use the extra fuel mix available to a nitrous engine without breaking and melting things. The system that allows us to postpone maximum cylinder pressure is ignition timing retard. To a lessor extent short rod ratios, lower compression ratios, high RPM, aluminum heads, a tight quench, a rich fuel mixture, a small carburetor and hotter cams tend to delay maximum cylinder pressure.

    Understand that, in our quest to delay cylinder pressure?s peak time, more is not necessarily better. Instead, consider that the ideal cylinder pressure would be just short of detonation pressure and this pressure would be maintained from top dead center, and as long as possible after TDC. If timing is really late, you won?t build enough cylinder pressure to start the car, let alone drive it. The 1000 PSI pressure in the example is not the maximum allowable combustion pressure but, rather, a comfortable pressure for illustration of the work principle.

    Some nitrous manufacturers recommend, "retard the timing two degrees for each fifty horse power of nitrous". Other nitrous kits have the flame speed artificially slowed by the intentional use of a rich fuel to nitrous ratio. The maximum performance engine with a heavy nitrous load must achieve peak cylinder pressure progressively further after TDC. The heavy load engine will have the fuel and oxygen mix to make high cylinder pressures, with the combustion chamber size being drastically increased due to the piston being on its way toward bottom dead center. The strongest engines have less compression ratio, less spark advance, and more nitrous.

    I have tried to explain the reason for a spark retard system in a Nitrous engine. However, many people just don?t like the idea of any retard. They say, "retard timing and exhaust heat goes up". It usually does in a stock non nitrous engine because lower peak cylinder pressure slows the burning. If the timing is retarded in a non-nitrous engine, the exhaust opens before the fuel mix is finished burning and exhaust temperatures go up. Piston temperatures usually go down and exhaust valve temperature goes up. In the nitrous engine, exhaust temperature goes up for several reasons. The first is that the power output has gone up considerably. More power usually produces more waste heat. Second, the need to keep maximum cylinder pressures within reason has dictated that the biggest part of the fire happens closer to the exhaust valve opening time. There just isn?t enough piston travel to extract all the energy out of the charge before the exhaust valve opens. Now, we could and sometimes do, open the exhaust valve later so more combustion pressure energy can be used to turn the crank. The trade off is negative torque on the exhaust stroke. If we still have significant cylinder pressure in the cylinder as the piston moves from BDC to TDC on the exhaust stroke, your net Hp falls drastically. A real problem at higher RPM.

    You can improve maximum power stroke efficiency and minimize exhaust pumping losses by running the engine at lower RPM and/or improving the exhaust valve size, lift and port design. A big nitrous engine likes everything about the exhaust to be big. If it flows good enough the cylinder will blow down by bottom dead center, even at high RPM with relatively mild exhaust valve timing. There are many variables in the design and development of an all out nitrous engine. A mistake will cause the melt down of any brand of piston. The high strength of the KB piston will withstand detonation and severe abuse. Unfortunately, all pistons will melt and when cylinder pressure limits are exceeded, run away detonation can occur. The excess detonation heat makes the plugs, valves and piston so hot the ignition system alone can not be used to shut the engine down. Continued operation worsens the situation to the point of a total melt down. Designing a maximum performance nitrous engine is more of an exercise in heat management than it is in engine building.

    A lack of a sufficient fuel supply is probably the most common killer of the nitrous engine. If you add a 300 HP kit to your present 300 HP engine, your fuel requirements roughly double and a shortage doesn?t just slow you down, it melts things. An electric fuel pump and fuel line devoted entirely to the nitrous equipment is recommended. Some people add a small "race fuel" tank just for the nitrous. If you are using a diaphragm mechanical pump to supply fuel to the carburetor, it is worth while to increase the fuel line I.D. If the carburetor goes lean while the nitrous is on, the pistons can melt even with a rich nitrous fuel jetting. The large fuel line trick (1/2" dia.) only makes a major improvement in the operation of diaphragm mechanical fuel pumps. It is a waste of time on most electric applications. An electric pump pushing a mechanical pump is not recommended and does not do well at high engine RPM. A large size line is effective with a mechanical pump, even if you use smaller fittings at the tank, fuel pump and carburetor. The advantage of the 1/2" large line is not related to the steady state flow rate of the line. The advantage relates to the acceleration time and displacement of the pulsating flow common to the mechanical pump.

    High compression ratios can be used with nitrous but shifting the maximum pressure after top dead center becomes more and more difficult. I prefer to use street compression ratios and then just work with adding more nitrous to get desired horsepower levels.

    We are currently testing some pistons specifically designed for Nitrous use. Current "off the shelf" pistons have been successfully run with a 500 HP nitrous kit combined with a Dr. Jacob's nitrous control system. Most of our effort has been to develop new ideas that will push the limit of nitrous technology. More testing is planned with a piston especially plated to reduce detonation.

    A beginner would do well to build a reliable high performance engine first, then advance to nitrous, turbo or supercharging. This makes for more fun, more education with less head ache and money spent. The book titled "Nitrous Oxide Injection" by David Vizard, published by S-A Design is stocked in any good speed shop and should be required reading by anyone wanting to run nitrous successfully.

Good luck!

John Erb
Chief Engineer,
KB Pistons
Previous Page / Table of Contents / Next Page



Gary, thanks for the cut and paste however please post about your nitrous experiance..I remeber you having installed a system on your Busa...

Thanks

John

StraightSix

  • Guest
nitrous naughty but nice
« Reply #3 on: October 07, 2005, 09:48:39 AM »
^ I'd be interested in hearing about that as well...

tough to find info on using nitrous for more than ten seconds at a time.

Offline Dynoroom

  • Global Moderator
  • Hero Member
  • ***
  • Posts: 2192
nitrous naughty but nice
« Reply #4 on: October 07, 2005, 11:54:02 AM »
"tough to find info on using nitrous for more than ten seconds at a time."

I have run several engines @ bonneville on nitrous, this is some of what I have found so far. We don't use huge amounts, 150-250 hp shots (Dave MacDonald runs over 400 hp shots staged) and only use it just before the timed mile. If your vehicle runs about 240 mph your in the mile for aprox. 15 seconds + or -, we've set records like this we feel because were not trying to go hog wild. Simple basic systems used in moderation. All the bottle temp. & pressure information is the same as at the drag strip. The good thing is if your bottle is too small and you run out of nitrous you just go rich. As far as the engine build it should be built similar to a blown motor, wider ring gaps etc.
The forgoing is just some simple insight and I'm sure there are other folks out there who know better than I on how to do it, so it's only MY point of view.
Michael LeFevers
Kugel and LeFevers Pontiac Firebird

Without Data You're Just Another Guy With An Opinion!

Racing is just a series of "Problem Solving" events that allow you to spend money & make noise...

Offline 1212FBGS

  • Hero Member
  • *****
  • Posts: 2532
    • http://www.motobody.com
nitrous naughty but nice
« Reply #5 on: October 07, 2005, 02:18:46 PM »
dahlgren, I agree combustion chamber is very important. I have completely diferent heads for NOS applications, it does make a huge difference. Dyno what kind of nozzles. where are they located, ever have any freeze up?

StraightSix

  • Guest
nitrous naughty but nice
« Reply #6 on: October 07, 2005, 02:26:16 PM »
Quote from: 1212FBGS
combustion chamber is very important.


Care to expand on this? how would you develop the chamber for nitrous?

landracing

  • Guest
nitrous naughty but nice
« Reply #7 on: October 07, 2005, 02:50:23 PM »
Really, I think Joe did just fine running nitrous for 4+ miles, stock heads no chamber modifications, 3x+ motor output on nitrous alone.

Jon

Offline ddahlgren

  • Global Moderator
  • Full Member
  • ***
  • Posts: 272
nitrous naughty but nice
« Reply #8 on: October 07, 2005, 03:08:46 PM »
The only freeze ups i ever had were from incorrectly sized lines and losing bottle pressure. Line sizing is very critical right down to the dimensions of every fitting. You can not have any expansions or it will freeze for sure. it starts out biggest at the tank valve and everything has to have the same cross section or be smaller from there. if you have an expansion you will drop pressure and freeze for sure.
Dave